			CBCS SCH	EME	
USN					17AE5.
		Fifth Semester B.	E. Degree Exan	nination, Aug	g./Sept.2020
		Hea	at and Mass	Transfer	
Time: 3 hrs.					Max. Marks: 100
	N	ote: Answer any FIVE full	questions, choosing	ONE full questio	n from each module.
			Module-1	(
1	a.	Explain heat transfer and it	s modes with examp	les.	(10 Marks
	b.	Explain boundary layer cha	aracteristics and its ty	pes.	(06 Marks)
	c.	Briefly explain Fourier's la	w of conduction.		(04 Marks
			OR		
2	a.	Briefly explain Stefan Bolt	zmann law.		(08 Marks)
	b.	Explain combined heat tran	sfer mechanism.		(04 Marks)
	c.	(i) Mass concentration			
		(i) Molar concentration	je se		
		(iii) Mass fraction			
		(iv) Mole fraction			(08 Marks
			Module-2		s. 1 - Marija Alak
3	a.	State the assumptions an	id derive the gener	al heat conduct	ion equation in Cartesiar
		coordinates for rectangular	element.		(10 Marks)
		thick (K = 50 W/m°C) and coefficients on both sides of surroundings air is 25°C. If (i) Maximum temperatu (ii) Outer surface temper	slab B is 1 cm thick of A and B are 200 a the rating of heater is re in the system ature of two slab	$K = 0.2 \text{ W/m}^{\circ}\text{C}$ and 50 W/m ² °C resist 1 KW. Find:	.). The outside heat transfe espectively. Temperature o (10 Marks)
		(ii) Outer surface temper			
			OR	o	
4	a. b.	fin. (10 Marks) A 50 cm × 50 cm copper slab 6.25 mm thick has a uniform temperature of 300°C. Its temperature is suddenly lowered to 36°C. Calculate the time required for the plate to reach the temperature of 108°C. Assume $\rho = 9000 \text{ kg/m}^3$, $c = 0.38 \text{ kJ/kg}^\circ$ C. Take K = 370 W/m°C h = 90 W/m ² °C. (10 Marks)			
5	а	Obtain an empirical exp	ression in terms of	dimensionless	numbers for heat transfe
	, ,	coefficient in the case of forced convection heat transfer. (10 Marks)			
	b.	Air at 10°C and at a pressure of 100 kPa is flowing over a plate at a velocity of 3 m/s. If the			
		plate is 30 cm wide and at a	a temp of 60°C. Calc	ulate the followin	g at x = 0.3 m.
		(i) Boundary layer thickne	ess (11)	Local friction co	efficient
		(iii) Local shearing sitess (v) Thermal boundary lave	er thickness (vi) Local convectio	n heat transfer coefficient
		(vii) Heat transfer from the	plate) 2000 00000000	(10 Marks
			1 of	2	
				•	ж.
			а .		

÷ Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

17AE53

OR

- Explain the significance of following: 6 a.
 - Grashoff number (i)
 - Nusselt number (ii)
 - (iii) Prandtl number
 - Explain the following: b.
 - (i) Thermal boundary layer
 - (ii) Velocity boundary later
 - c. Calculate the convection heat loss from a radiator 0.5 m wide and 1m high maintains at a temperature of 84°C in a room at 20°C. Treat the radiator as a vertical plate. (06 Marks)

Module-4

Derive an expression for radiation heat exchanger between two parallel infinite gray surface. 7 a. (10 Marks)

Two parallel large plates with emissivity (\in) = 0.5 each, are maintained at different b. temperature and are exchanging heat only by radiation. Two equally large radiations shields with surface emissivity 0.05 are introduced in parallel to the plates. Find the percentage of (10 Marks) reduction in net radiative heat transfer.

OR

- With assumptions, derive an expression for LMTD for a parallel flow heat exchanger. 8 a. (10 Marks)
 - b. In a counter flow double pipe heat exchanger from 25°C to 65°C by an oil with a specific heat of 1.45 kJ/kgK and mass flow rate of 0.9 kg/s. the oil is cooled from 230°C to 160°C. If the overall heat transfer coefficient is 420 W/m²°C. Calculate the following:
 - The rate of heat transfer (i)
 - (ii) Mass flow rate of water
 - (iii) The surface area of heat exchanger

Aodule-5

Write short notes on:

9

- Aerodynamic heating a.
- b. Ablative heat transfer
- Principle of rocket propulsion C. Gas turbine combustion chamber d.

OR

- Explain mass transfer and modes of mass transfer. 10 a. Briefly explain the species conservation equation. b.
 - c. Explain briefly Fick's law of diffusion.

2 of 2

(10 Marks) (06 Marks) (04 Marks)

(06 Marks)

(08 Marks)

(20 Marks)

(10 Marks)